hypotrochoid - definitie. Wat is hypotrochoid
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is hypotrochoid - definitie


Hypotrochoid         
·noun A curve, traced by a point in the radius, or radius produced, of a circle which rolls upon the concave side of a fixed circle. ·see Hypocycloid, Epicycloid, and Trochoid.

Wikipedia

Hypotrochoid

In geometry, a hypotrochoid is a roulette traced by a point attached to a circle of radius r rolling around the inside of a fixed circle of radius R, where the point is a distance d from the center of the interior circle.

The parametric equations for a hypotrochoid are:

x ( θ ) = ( R r ) cos θ + d cos ( R r r θ ) y ( θ ) = ( R r ) sin θ d sin ( R r r θ ) {\displaystyle {\begin{aligned}&x(\theta )=(R-r)\cos \theta +d\cos \left({R-r \over r}\theta \right)\\&y(\theta )=(R-r)\sin \theta -d\sin \left({R-r \over r}\theta \right)\end{aligned}}}

where θ is the angle formed by the horizontal and the center of the rolling circle (these are not polar equations because θ is not the polar angle). When measured in radian, θ takes values from 0 to 2 π × LCM ( r , R ) R {\displaystyle 2\pi \times {\tfrac {\operatorname {LCM} (r,R)}{R}}} (where LCM is least common multiple).

Special cases include the hypocycloid with d = r and the ellipse with R = 2r and dr. The eccentricity of the ellipse is

e = 2 d / r 1 + ( d / r ) {\displaystyle e={\frac {2{\sqrt {d/r}}}{1+(d/r)}}}

becoming 1 when d = r {\displaystyle d=r} (see Tusi couple).

The classic Spirograph toy traces out hypotrochoid and epitrochoid curves.

Hypotrochoids describe the support of the eigenvalues of some random matrices with cyclic correlations